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ABSTRACT: The National Severe Storm Laboratory’s Warn-on-Forecast System (WoFS) is a

convection-allowing ensemble with rapidly cycled data assimilation (DA) of various satellite and

radar datasets designed for prediction at 0-6 h lead time of hazardous weather. With the focus

on short lead times, WoFS predictive accuracy is strongly dependent on its ability to accurately

initialize and depict the evolution of ongoing storms. Since it takes multiple DA cycles to fully

"spin up" ongoing storms, predictive skill is likely a function of storm age at the time of model

initialization, meaning that older storms which have been through several DA cycles will be forecast

with greater accuracy than newer storms which initiate just before model initialization or at any

point after. To quantify this relationship, we apply an object-based spatial tracking and verification

approach to map differences in the probability of detection (POD), in space-time, of predicted

storm objects from WoFS with respect to Multi-Radar Multi-Sensor (MRMS) reflectivity objects.

Object-tracking/matching statistics are computed for all suitable and available WoFS cases from

2017 through 2021. Our results indicate sharply increasing POD with increasing storm age for

lead times within three hours. PODs were about 0.3 for storm objects that emerge 2-3 h after

model initialization, while for storm objects that were at least an hour old at the time of model

initialization by DA, PODs ranged from around 0.7 to 0.9 depending on the lead time. These results

should aid in forecaster interpretation of WoFS, as well as guide WoFS developers on improving

the model and DA system.
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SIGNIFICANCE STATEMENT: The Warn-on-Forecast System (WoFS) is a collection of

weather models designed to predict individual thunderstorms. Before the models can predict

storms, they must ingest radar and satellite observations to put existing storms into the models.

Because storms develop at different times, more observations will exist for some storms in the

model domain than others, which results in WoFS forecasts with different accuracy for different

storms. This paper estimates the differences in accuracy for storms that have existed for a long time

and those that haven’t by tracking observed and predicted storms. We find that the likelihood of

WoFS accurately predicting a thunderstorm nearly doubles if the storm has existed for over an hour

prior to the forecast. Understanding this relationship between storm age and forecast accuracy will

help forecasters better use WoFS predictions and guide future research to improve WoFS forecasts.

1. Introduction

The National Severe Storms Laboratory’s Warn-on-Forecast System (WoFS) (Stensrud et al.

2009, 2013), is an on-demand, rapidly-updating, convection-allowing ensemble designed to dra-

matically improve lead times for hazardous weather. WoFS targets watch to warning lead times

(i.e., 0-6 h), and tentative plans are for WoFS to become operational for the National Weather

Service (NWS) within the 2025-30 time frame. For several years now, NSSL has conducted suc-

cessful real-time demonstrations of a prototype WoFS configuration during the spring and summer

as part of forecasting activities during NOAA Hazardous Weather Testbed Spring Forecasting

Experiments (Gallo et al. 2017; Clark et al. 2020, 2021) and the Weather Prediction Center’s Flash

Flood and Intense Rainfall Experiment (Trojniak and Albright 2019). Thus, an extensive archive of

forecast cases has been amassed from 2017 through 2021. Concurrently, object-based verification

methods for evaluating the quality of WoFS guidance have been developed to match predicted

thunderstorm objects in WoFS to corresponding objects in gridded NEXRAD data from the Multi-

Radar Multi-Sensor (MRMS; Smith et al. 2016) system. This object-based verification approach

can be implemented for any diagnostic field derived from both model data and observations (e.g.

Davis et al. 2006a; Gilleland et al. 2009; Wolff et al. 2014) and has been extensively applied to

prediction of radar-reflectivity-based proxies for thunderstorms in WoFS (e.g. Skinner et al. 2018;

Flora et al. 2019, 2021; Miller et al. 2022).
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In this study we extend the object-based verification methodology of Skinner et al. (2018) to

include thunderstorm object tracking in time of MRMS composite reflectivity objects, which we

match to corresponding objects in the simulated reflectivity of WoFS members on spatial scales

comparable to National Weather Service warning products. Tracking observed thunderstorm

objects enables the age of storms relative to convection initiation (CI) to be estimated. Subsequent

matching of MRMS objects to WoFS thunderstorm objects allows the probability of detection

(POD) to be calculated as a function of storm age relative to CI.

The central objective of this research is to quantify changes in accuracy for successive WoFS

analyses and forecasts produced using rapidly cycled, ensemble Kalman filter (EnKF; Houtekamer

and Zhang 2016) based assimilation of remotely sensed radar and satellite observations of convec-

tive storms (e.g., Wheatley et al. 2015; Jones et al. 2016). We demonstrate a clear effect of cycled

data assimilation (DA), where POD in WoFS analyses and short-lead-time forecasts increases

markedly with increasing storm age. We also show that DA-based improvements in thunderstorm

forecasts decrease with increasing forecast length, but are maintained through 3 hours of forecast

lead time. Quantification of the impact of rapidly cycled DA on the quality of WoFS thunderstorm

analysis and prediction serves two broader goals:

1. Establish expected changes in WoFS forecast quality following CI. Correlation of POD with

storm age results in storm-to-storm variation in forecast quality across the WoFS domain,

which complicates effective real-time interrogation of WoFS guidance. Quantification of

expected changes in forecast quality with storm age will inform best practices for operational

use of WoFS guidance (e.g. Wilson et al. 2021; Gallo et al. 2022), and could be useful input

for machine-learning-based post-processing algorithms (e.g., Flora et al. 2021).

2. Determine the approximate number of DA cycles needed to produce accurate storm-scale

analyses in WoFS. The efficiency of EnKF-based, rapidly cycled DA of radar and satellite

observations has not been assessed in a quasi-operational system across a large sample of

cases. Quantifying the typical ensemble "spin up" time for WoFS thunderstorm analyses will

establish a baseline for future DA configurations to be tested against.

The remaining sections are organized as follows: we describe the datasets used in this study and

our object-based verification software in Section 2, including details on quality control applied to
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the forecast and verification datasets and algorithms used for object identification, tracking, and

matching. We present our results in Section 3 and provide conclusions, including potential avenues

for improving the system, in Section 4.

2. Object-based Tracking and Matching

Object-based verification techniques provide a robust and flexible means to quantify the skill of

anNWP system and are often used to assess the forecast quality of guidance for discrete events, such

as areas of heavy precipitation (e.g. Davis et al. 2006b, 2009; Ebert and Gallus 2009; Johnson et al.

2013; Clark et al. 2014; Wolff et al. 2014; Bytheway and Kummerow 2015), jet streaks (Hewson

and Titley 2010; Mittermaier et al. 2016), or upper-level clouds (Mittermaier and Bullock 2013;

Griffin et al. 2017; Jones et al. 2018; Griffin et al. 2021). Object-based techniques have proven

to be particularly well suited to verification of convection-allowing model (CAM) thunderstorm

forecasts (e.g. Kain et al. 2013; Cai and Dumais 2015; Sobash et al. 2016; Schwartz et al. 2017;

Potvin et al. 2019; Duda and Turner 2021), including predictions of CI (Burghardt et al. 2014;

Burlingame et al. 2017), storm mode (Pinto et al. 2015; Johnson et al. 2020), and mesocyclone

occurrence (e.g. Clark et al. 2013, 2014; Skinner et al. 2016; Stratman and Brewster 2017). As

WoFS is designed to predict hazards within individual thunderstorms at short lead times (0–6 hr),

object-based verification is a natural fit for evaluation of WoFS forecast quality and has been used

to establish baselines of WoFS skill for thunderstorm and mesocyclone prediction (Skinner et al.

2018; Flora et al. 2019) and quantify changes in forecast skill across different system configurations

(Jones et al. 2018, 2020; Flora et al. 2021; Kerr et al. 2021; Miller et al. 2022).

a. Forecast and Verification Datasets

WoFS composite reflectivity forecasts for 176 cases between the years of 2017 and 2021 are

evaluated. There have been several minor changes to the WoFS configuration during this period,

most notably a switch from the Data Assimilation Research Testbed (DART; Anderson and Collins

2007; Anderson et al. 2009) to the Community Gridpoint Statistical Interpolation (GSI; Kleist et al.

2009) data assimilation system in the summer of 2018. Additionally, changes to the initial and

boundary conditions provided by the High-Resolution Rapid Refresh Ensemble (HRRRE; Dowell

et al. 2016) and pre-processing of radar and satellite observations assimilated have been made.
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Please refer to Jones et al. (2018); Skinner et al. (2018); Yussouf and Knopfmeier (2019); Jones

et al. (2020) for detailed descriptions of WoFS configurations during the period. Despite these

changes, the system has used the National Severe Storms Laboratory 2-moment microphysical pa-

rameterization (NSSL 2-moment; Mansell et al. 2010) to calculate simulated reflectivity during the

full period and subjective and object-based comparisons of reflectivity forecasts from year-to-year

have not revealed large changes in system performance; therefore, we treat WoFS configurations

as approximately consistent through the period.

To ensure consistency across the dataset, we consider 18-member WoFS forecasts initialized

hourly between 20 and 02 UTC with up to 3 hours of forecast lead time for each case. MRMS

gridded composite reflectivity observations are produced for each possible valid time of WoFS

forecasts to serve as a verification dataset. MRMS reflectivities are interpolated to the WoFS grid

using a Cressman filter with a 3-km radius of influence to match the WoFS model native horizontal

resolution of 3 km. Lastly, both WoFS and interpolated MRMS datasets contain output every 5

minutes.

b. Object Identification and Quality Control

A schematic for our tracking and matching implementation is shown in Figure 1, including

the various parameters needed to perform quality control on the inputs and achieve a physically

consistent set of object matches. The parameters shown in Figure 1 are described therein.

The primary task of the object identification software is to determine the physical area within the

composite reflectivity field that comprises a thunderstorm. A storm object is first identified as the

closed contour of values exceeding a prescribed reflectivity threshold, 3�/1 . For our purposes,

3�/1 is set to 40 in MRMS and 43 in WoFS. WoFS uses a slightly higher threshold because it

has a slight high bias and 43 dBZ is approximately equivalent to the same percentile as 40 dBZ

in the MRMS data. The objects are then labeled using a consecutive integer for a given instant in

time. Two filters are then applied: The first filter aims to eliminate objects at scales less than the

effective model resolution, which is about 4-6 times the horizontal grid-spacing (� 5 = 144 :<2

corresponds to a 12 x 12 :< or 4 x 4 grid-length box) and the second discards objects that have a

maximum intensity less than a second reflectivity threshold (3�/2 , set to 48, 45 dBZ inWoFS and

MRMS data, respectively). In the first case we seek to eliminate object signals that are regarded as
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WoFS dBZ(x,y)

MRMS dBZ(x,y)
Binary Object

Field >:
dBZ1 = 40 

Remove Objects
by Area:

A = 144 km2 

Apply Lower
Bound to Max.

Intensity:
 dBZ2 = 45 

Cluster Objects
by TI Score:
Dc = 15 km 

Match to Previous
Time by Greatest

Overlap

Binary Object
Field >:

dBZ1 = 43 

Remove Objects
by Area:

A = 144 km2 

Apply Lower
Bound to Max.

Intensity:
 dBZ2 = 48 

Cluster Objects
by TI Score:
Dc = 15 km 

Match WoFS to MRMS
By TI Score:
Dm = 40 km

Fig. 1. Tracking and matching algorithm sequence for a single coincident valid time. Parameters with their

respective units are as follows: 3�/1 (3�/); Initial object field built from values greater than this. 3�/2 (3�/);

Objects with a lower maximum intensity are filtered out. � (:<2); Objects smaller in area than � are filtered out.

�2 (:<); Reference distance for TI matching of object clusters. �< (:<); Reference distance for TI matching

of model to observation objects.

spurious and can contribute to an over-prediction bias of convective initiation, taking into account

a judgement of the effective resolution of both model and radar fields. The second filter aims to

disregard precipitation modes that are not associated with convective storms, in particular, intense

stratiform regions trailing mesoscale convective systems that have been found to exceed 45 dBZ

in WoFS forecasts. The matching thresholds/parameters specified here and shown in Fig. 1 are

derived from Skinner et al. (2018), which also provides a sensitivity analysis for small changes in

threshold values.

A second level of processing is used to identify clusters of storms that may be regarded as a

single object in the subsequent object matching. In this study we process MRMS andWoFS object

fields independently to identify clusters of storms based on a simplified total interest (TI) score

based on (Davis et al. 2009; Skinner et al. 2018) given by:

) �cluster =
(�2 −�<8=)

�2

. (1)
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where �2 is the distance threshold for clustering and �<8= is the minimum distance between a pair

of storm objects computed as the minimum distance between the boundaries of two objects. Here,

�<8= is set to 15 km and objects with a ) �cluster greater than 0.2 are considered a cluster. This

threshold was set heuristically by examination of matched fields over a small sample of cases.

The search algorithm finds clusters of storm objects, relabels them to a common number, and

computes and stores aggregate diagnostic properties for the cluster. It is important to note that this

type of merging occurs prior to matching and is only applied to objects in a spatial field at a single

time.

c. MRMS-object-tracking to estimate storm age

A novel aspect of our object-based approach is to include tracking or self-matching in time for

MRMS objects (Fig. 2a). A simple tracking strategy allows for direct measurements of observed

storm age relative to convection initiation. The high temporal resolution (5-min) of WoFS and

MRMS output simplifies object-tracking by limiting the distance objects move between times so

that a simple greatest-overlap search is implemented. Object labels in matched objects from the

prior time are reassigned to current objects, and object "age" is the aggregate time from the first

appearance of the object in the observational data through the observed lifetime of that object. As

shown in Figure 2a, given the sufficiently small time increment (5 min. here), this method works

robustly without the need for sophisticated reconstruction of trajectories or other assumptions.

d. Treatment of merging or splitting

The intent of this study is to isolate the relationship between storm prediction and its agemeasured

from CI. As such, the tracking/matching algorithm does the following:

1. Mergers are accounted for in the clustering procedure described in section 2b so that an object

that is incorporated into a cluster assumes the label of the cluster. Thus, all objects trace back

to their respective CI.

2. Splitting objects are not relabeled in our algorithm in order to prevent the splitting from

creating multiple new labels (e.g. Van der Walt et al. 2014) that would present a false signal

of CI in objects that have potentially undergone several assimilation cycles.
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Fig. 2. (a): Diagnostic field of time-tracked MRMS objects on 2 May 2018 between 21Z and 22Z for storms in

western Oklahoma. Forecast initialization is at 21Z. Increasing labels indicate younger storms. (b): Diagnostic

field of tracked and matched objects on May 2, 2018 valid at 2145Z for storms in western Oklahoma. The

Probability of Detection (POD) for the example is provided in the lower-right corner.

e. Object Matching of Model to Observations

Following quality control, spatial fields of WoFS and MRMS objects at a coincident time are

matched based on a Total Interest score defined as,

) �match = 0.5
[
(�< −�<8=)

�<

+ (�< −�2=C)
�<

]
. (2)

where �< is the constant distance threshold for matching, while �<8= is the minimum boundary

distance between a pair of storms, and �2=C is the distance between object centroids. Both �<8=

and �2=C are computed from each object pair being interrogated.

We note that the definition in equation 2 differs from Skinner et al. (2018) in that "time"

proximity matching is not included. We use a single spatial distance threshold (�< = 40 :<) for

both minimum and centroid distance measures and a TI threshold of 0.2 to define a matched object

pair. These thresholds are the same as Skinner et al. (2018) and were chosen to approximate the

typical scale of an NWS warning product.

In this study we consider probability of detection (POD) as a simplified definition of skill. With

reference to Figure 2b, the instantaneous POD is,
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%$� =
"�

$�
, (3)

where "� is the number of identified matched objects and $� is the total number of observed

objects. As such, POD is directly dependent on observed objects and thus their age, which provides

the foundation for subsequent analysis. We note that our analysis is limited to POD by necessity

since we need to be able to relate the age of an object to its existence in both observations and

simulated fields. As a result, we do not consider false-alarm ratio (FAR) or other 2x2 contingency-

table-based verification metrics as we are unable to associate false alarms with specific ages of

observed storms, which, by definition of a false alarm, do not exist.

Lastly, we note that we performed several visual inspections of track/matching performance by

generating lengthy animations over several cases from each year of labeled MRMS and WoFS

objects superimposed on a spatial grid where Figure 2b represents and example of such a time

snapshot. From these development studies, we were able to verify the time tracking of MRMS

objects for age as well as the relabeling for matches when compared to forecast fields. In both

cases we found the algorithm to have robust and physically consistent performance with the

given parameters i.e. clustering and matching of objects was as expected for a given field and

time without evidence of misplaced objects. Samples of such animations, as generated by the

tracking/matching software, are made available through our code repository: https://github.

com/WarnOnForecast/WoFS_Verif2020.git.

3. Results

a. Condensed tracked/matched database

Figure 2b shows a typical matched field for a single member at a particular valid time. This type

graphical diagnostic output is instrumental in verifying the performance of the matching software

given the various user-defined parameters. The results are stored in a Python dictionary file so that

each object (model and observational) is accounted for with labels, times, areas, maximum intensity

and other information. The purpose is to generate a condensed archive that is much smaller than

the gridded fields processed. From this discrete database, analysis can then be performed by means
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of slicing into the respective dictionary objects and applying discretionary filters as needed. An

added benefit is that the resulting database is highly portable (on the order of a fewMb of memory).

b. Initial characterization of results

We begin our analysis with a basic characterization of the results database as specified above.

There are 20 cases for 2017, 44 in 2018, 45 in 2019, 39 in 2020, and 29 in 2021. Each case

is comprised of 8 hourly forecasts from 20UTC to 03UTC. This gives a total of 1416 forecasts

considered in our study. Figure 3a shows that POD behavior with respect to age is a general

feature of the WoFS and insensitive to changes that may have been applied to the system over the

previous five years. Similarly, grouping the results by season, where cases driven by collaboration

with the Storm Prediction Center (SPC) are in April and May while cases driven by collaboration

with the Weather Prediction Center (WPC) are in June through September, also display similar

behavior. The latter suggests that our results are also relatively insensitive to changes in storm

mode or synoptic configuration. We do note a drop in maximum POD for WPC cases in figure 3a,

but the behavior remains consistent. Here we present aggregate results for all lead times less than

30 minutes in order to demonstrate the trends more clearly within a critical time frame for WoFS

guidance (0 to 30 minutes of lead time).

Our results also allow us to confirm an intuitive assumption that older storms objects are often

larger than shorter-lived storms. Figure 3b demonstrates a strong positive and linear correlation

between estimated object area and age. Evident in this result is the effect of the minimum area filter

implemented in our tracking algorithm as objects of zero age have a finite area of approximately

250 :<2. We note the presence of 2 cases from 2020 where a large convective system was advected

into the WoFS domain resulting in "young" but otherwise anomalously large storm objects.

c. Accuracy by object age and lead time

To analyze the impact of object age on forecast accuracy, ensemble-mean POD (computed as

POD from eq. 3 arithmetically averaged over ensemble members at a given time) is shown as a

function of object age and lead time in Figure 4. Here, the object age is computed as the true

estimate of age for the object as measured from observations (which we refer to as “absolute object

age”). For example, the orange line in Fig. 4b shows POD for a range of object ages 90 minutes into
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Fig. 3. (a): Ensemble mean probability of detection (POD) as a function of object age further averaged over

all lead times less than 30 minutes and for various subsets (yearly and seasonal) of the forecast database. (b):

Area and absolute age correlation in MRMS reflectivity objects over various subsets (yearly and seasonal) of the

reference database. Seasonal subsets are denoted by SPC refer to cases that predominantly belong to the months

of April and May while WPC corresponds to cases belonging to the months of June through September.

the forecast. For this orange line, an object age of 1 hour means that the object started 30 minutes

after model initialization and is thus 1 hour old at 90 minutes into the forecast. Similarly, for the

green line in Fig. 4a, which corresponds to 30-minute lead time, an object age of 1 hour means

that the object started at 30 minutes before model initialization and is thus 1 hour old at 30-minute

lead time. Because the dashed black curve is valid for the analysis time, it indicates approximately

how many DA cycles are needed to skillfully spin up a storm. For a storm that first appears at the

analysis time (i.e., object age of 0.0), the POD is very low at just above 0.2 1. However, the POD

quickly rises with increasing object age, going from about 0.65 to 0.75 to just above 0.8 for object

ages of 0.5, 1.0, and 1.5 hours, respectively, and then leveling off. Since there are four DA cycles

per hour, we can say that it takes 4-6 DA cycles to reach the maximum skill in the analysis, which

1TheWoFS reflectivity analysis is determined by the EnKF and will more closely match observed reflectivity values than reflectivity in forecasts,
which are solely determined by the microphysical parameterization and are known to exhibit a high bias of CI. The very youngest objects that
emerge within the first time step of a forecast cannot be accounted for in the analysis and will also be poorly located leading to the very low POD
for objects of 0 min. of age.
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is similar to prior estimates in idealized EnKF-based radar assimilation experiments (e.g. Tong

and Xue 2005). This also illustrates a clear avenue for improving WoFS: for example, if any aspect

of WoFS DA (e.g., more frequent cycling) could raise POD faster for younger objects, it would

very likely improve the subsequent forecasts. The other lead times pictured in Fig. 4 show similar

patterns of increasing PODs with increasing object ages. Furthermore, there are fairly uniform

decreases in POD with later lead times, as would be expected because of increasing error growth.
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Fig. 4. Ensemble mean probability of detection (POD) as a function of object age relative to model lead

time for lead times of (a): 0, 5, 10, 15, and 30 minutes, and (b): 60, 90, 120, 150, and 180 minutes. Shaded

regions around each curve show the 95th percentile confidence level for each based on a resampled ensemble (18

member) distribution.

Another way to examine the impact of object age on model performance is by analyzing accuracy

for object ages relative to WoFS initialization time (which we refer to as “relative object age”)

instead of lead time, which is done in Figure 5. Similar to Fig. 4b, the orange line in Fig. 5b

shows ensemble mean POD for a range of object ages at 90 minutes into the forecast. However,

with object age given at the initialization time ('$� = $�− !)), an object age of 1 hour now

means that object started 1 hour before model initialization and would thus be 2.5 hours old at 90

minutes into the forecast. Relative object ages that are negative mean that the objects started after
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model initialization (e.g., -1 hour means that the object started 1 h after initialization). Conducting

the analysis in this way allows us to better isolate the impact of analysis quality on subsequent

forecasts. The main result, again, is that POD increases with increasing relative object age with

less dependence on lead time as a consequence of re-scaling the object age. In other words, the

object age at the time of model initialization appears to be the main driver of forecast quality rather

than lead time. For example, for object ages 1.5 hours or greater, the PODs maintain a high level

of skill in the range of about 0.7 to 0.9 all the way out to lead times of 180 minutes (3 hours).

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Relative object age (hour)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
se

m
bl

e-
m

ea
n 

PO
D

(a)
Early lead time evolution of POD

Lead times
0000 min
0005 min
0010 min
0015 min
0030 min

3 2 1 0 1 2 3
Relative object age (hour)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

En
se

m
bl

e-
m

ea
n 

PO
D

(b)
Later lead time evolution of POD

Lead times
0060 min
0090 min
0120 min
0150 min
0180 min

Fig. 5. Same as Figure 4, but for object age at the time of model initialization time '$� = $�− !) . The

vertical dashed red dashed line marks a relative object age of 0.0; negative '$� corresponds to objects that are

not assimilated while positive '$� is otherwise. Shaded regions around each curve show the 95th percentile

confidence level for each based on a resampled ensemble (18 member) distribution.

We may interpret the data shown in Figure 5 as a surface in object age and lead time coordinates

and further isolate the effect of model analysis on forecast performance, as in Figure 6a and b.

These results show stratification with increasing POD curves for increasing relative object age

bins i.e., longer-lived, larger, better-resolved convection as confirmed in Fig. 3. As a baseline of

performance, objects that do not pass through DA are subject to a POD ≈ 0.45 lower bound (i.e.,

black dashed line in Figure 6a) and the averaged accuracy for all objects is POD ≈ 0.7 at a lead
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time of 1 hour. We provide the 95th percentile confidence intervals for each curve in Figure 6a

and b where we observe that uncertainty is bounded and within 10% for each ROA bin, but grows

with lead time for unassimilated objects (Figure 6a). Also, uncertainty in the total POD curve is

relatively large due to the effect of including the non-analyzed contributions. It is evident from

these results that a storm object that is at least 1 hour old at the time of initialization can be expected

to be simulated with a POD > 0.7 through 3 hours of lead time; this is nearly double the skill for

an equivalent object that is not assimilated and may very well be part of the same field of storms.

Figure 6 clearly demonstrates the utility of the object-based approach for characterizing a forecast

as constituent regions that are subject to independent skill, primarily controlled by the age of an

object/storm as it is assimilated into the forecast. Furthermore, it provides a practical reference for

what a user may expect in predictive skill when the current age of a storm is known.

To explain the behavior of POD for all objects, which gradually decreases with increasing lead

time, Fig. 6c shows cumulative MRMS object counts at each lead time while Fig. 6d shows

cumulative matched object counts. The total MRMS object counts are the denominator in the

POD calculation, while the matched counts are the numerator. While the matched object counts

for relative object ages greater than zero gradually decrease with lead time, the object counts for

relative object ages less than zero increase until 1 h lead time and then remain fairly constant. Thus,

as lead time increases the PODs for relative object ages less than zero have more weight, which

gradually causes total POD to trend downward.

The relationship between object age and POD in Figures 3–5 is consistent across various subsets

of the dataset, with variation of POD with object age much larger than variation between different

years (and associated system configuration differences), different seasons (spring vs. summer), or

different forecast initialization times (not shown). We note that the rapid increase in POD from

0 to 5 minutes of lead time in Figures 4 through 6b is primarily associated with the change from

reflectivity values in the ensemble analysis produced by the EnKF to reflectivity produced by the

microphysical parameterization in forecasts. Finally, we note that the decrease in total object

counts with lead time evident in Figure 6b, c is a result of the majority of WoFS forecasts occurring

after the diurnal convective maximum. Since we consider 3-hr forecasts initialized between 20

and 02 UTC, we include more forecast time after 00 UTC than before it. The additional forecast

time after 00 UTC will more likely occur during a period of diminishing storm coverage owing to
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Fig. 6. (a): Probability of detection (POD) broken up into bins of relative object age with respect to lead time.

The dashed black line corresponds to all objects of any age that started after model initialization (i.e., did not

"pass through" the analysis). The dashed red line indicates the total POD for all objects at the specified lead

time. (b): POD broken out by relative object age bins. Standard deviation shown as transparent filled areas for

(a) and (b): (c): Total MRMS object counts at each lead time (i.e., denominator of POD), and (d): total matched

MRMS object counts at each lead time (i.e., numerator of POD). '$� is age at the time of initialization. Shaded

regions around each curve show the 95th percentile confidence level for each based on a resampled distribution

with each age bin.

nocturnal stabilization or during upscale transition to a linear storm mode, which will generally

produce fewer, larger reflectivity objects.

4. Conclusions

In this study we present a characterization of WoFS accuracy using an object-based verification

approach encompassing hundreds of cases over 5 years of operation. We introduce a novel

tracking/matching algorithm that exploits the high temporal resolution of the system, calculates

storm age based on MRMS histories, and matches storm objects to forecast fields. Based on these

data we are able to directly evaluate the skill, in terms of Probability of Detection, of WoFS as a
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function of the age of a storm object as it is assimilated into the system for a given forecast cycle.

Our central finding is that storm objects that are at least one hour old at the time of assimilation

enjoy POD > 0.7 through 3 hours of lead time with the greatest accuracy shown within 1 hour

of lead time. This fits precisely with the design intent of WoFS in providing guidance on rapidly

evolving severe weather. In contrast, objects of any age that are not assimilated into a forecast are

likely to be simulated correctly at a rate of POD ≈ 0.45.
Our findings indicate that the age/maturity of a storm at the time of forecast initialization is

the dominant factor that determines the performance of the system for that storm object as we

are unable to find other variables that have a similar influence. In other words, the accuracy of

short-termWoFS thunderstorm forecasts is primarily driven by the accuracy of the initial condition,

consistent with prior idealized studies (Flora et al. 2018). A practical ramification of this finding is

that that the skill ofWoFS thunderstorm forecasts will generally improve dramatically following CI,

resulting in variable forecast accuracy between different thunderstorms within the system domain

in any given forecast.

The current study is limited to examining reflectivity objects as proxies for convective storms

and we have not explored alternative proxies when applying our tracking/matching software.

Nevertheless, because matching is a spatial proximity search, we are confident that reflectivity

objects provide a robust and generalizable analysis. Thus, given a sufficiently robust dynamical

core and physics architecture, the greatest benefit to short-term thunderstorm forecast quality is

derived from improvements to the data assimilation system.

The current study does not examine WoFS skill relative to alternative short-term thunderstorm

prediction methods. Specifically, future work should compare WoFS guidance to extrapolation-

based prediction of observed thunderstorms. Such a comparison will enable quantification of

potential gains in forecast accuracy from numeric prediction of storm processes over extrapolation

(Hwang et al. 2015). Similarly, storm-age based analyses of WoFS proxies for thunderstorm-

related hazards may be used as inputs, or as a baseline comparison for explicit thunderstorm hazard

prediction by machine learning models trained on WoFS guidance (Flora et al. 2021; Clark and

Loken 2022).

The results herein point towards several paths for improving the quality and potential value of

WoFS thunderstorm guidance. Themost straightforward path is accelerating the spin up of accurate
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thunderstorm analyses in WoFS through increased data assimilation frequency, improved data

assimilation methods, or better use of available observations. Additionally, improved prediction

of CI in WoFS will raise the POD for objects not present at model initialization. To that end,

our expectation is that higher spatial resolution in WoFS will lead to a better representation of

the conditions leading to CI. Therefore, improved observation and prediction of (near) storm

environments, particularly of air mass boundaries often responsible for CI, will raise the overall

quality of WoFS thunderstorm guidance. Finally, the dependence of WoFS forecast quality on

thunderstorm age results in a unique challenge for end user interpretation, as each WoFS forecast

can be considered multiple independent predictions of varying quality for thunderstorms within

the system domain. Further research is needed to understand how end users assess confidence

in WoFS predictions of individual storms and to develop guidance that can quantify the expected

confidence in the accuracy of an ensemble thunderstorm forecast.
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